

The past 5000 Years History of Solar Modulation of Cosmic Radiation from \$^{10}\$Be and \$^{14}\$C Studies

H. Oeschger and J. Beer

Phil. Trans. R. Soc. Lond. A 1990 330, 471-480

doi: 10.1098/rsta.1990.0028

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

Phil. Trans. R. Soc. Lond. A 330, 471-480 (1990)

The past 5000 years history of solar modulation of cosmic radiation from 10Be and 14C studies

By H. Oeschger¹ and J. Beer²

- ¹ Physics Institute, University of Bern, CH-3012 Bern, Sidlerstrasse 5, Switzerland
- ² Environmental Physics, ETHZ, c/o EAWAG, CH-8600 Dübendorf, Switzerland

¹⁰Be is produced in a similar way as ¹⁴C by the interaction of cosmic radiation with the nuclei in the atmosphere. Assuming that the ¹⁰Be and ¹⁴C variation are proportional and considering the different behaviour in the Earth system, the ¹⁰Be concentrations in ice cores can be compared with the ¹⁴C variations in tree rings. A high correlation is found for the short-term variations (14C-Suess-wiggles). They reflect with a high probability production rate variations. More problematic is the interpretation of the long-term trends of 14C and 10Be. Several explanations are

The reconstructed CO₂ concentrations in ice cores indicate a rather constant value (280 ± 10 p.p.m. by volume) during the past few millenia. Measurements on the ice core from Byrd Station, Antarctica, during the period 9000 to 6000 years BP indicate a decrease that might be explained by the extraction of CO₂ from the atmosphereocean system to build the terrestrial biomass pool during the climatic optimum.

Introduction

After W. F. Libby introduced the radiocarbon dating method around 1950, by studying ¹⁴C; C ratios in absolutely dated samples like tree-rings several authors investigated the constancy of the atmospheric ¹⁴C:C ratio.

H. E. Suess pointed both at the existence of a long-term trend and short-term wiggles in the ¹⁴C-bristlecone tree-ring record (Suess 1971, this Symposium). Whereas the existence of the long-term trend was confirmed in a number of laboratories, it was roughly a decade before general agreement regarding the existence of the short-term wiggles was reached. Today a very precisely measured record of the ¹⁴C trend over the past 9000 years exists (Stuiver & Kra 1986). With the development of accelerator mass spectrometry about a decade ago, it became possible to measure additional long-lived radioisotopes (10Be, 26Al, 36Cl) in natural archives.

In this paper we compare the ¹⁴C record measured in tree-rings with ¹⁰Be records measured on ice cores and deduce the present knowledge of short-term and long-term variations of cosmic radiation.

THE 14C-VARIATIONS

Figure 1 shows the present continuous record on ¹⁴C:C variations, expressed in per mille deviations from a standard, determined on dendrochronologically dated tree-rings (Stuiver & Kra 1986).

Additional information on the 14C:C behaviour during the glacial-post-glacial transition exists from peat bog studies (Oeschger et al. 1980) and plant macrofossils deposited in lake sediments (Zbinden et al. 1990), which indicated variations of the order of 50-100% during

[73]

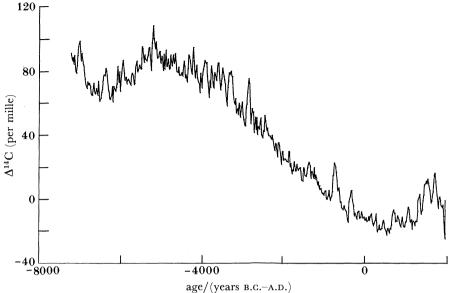


FIGURE 1. Atmospheric ¹⁴C:C variations expressed in per mille deviation Δ¹⁴C from a standard (Stuiver & Kra 1986).

this period of major climate change. It is likely that these $^{14}\mathrm{C}$ variations from $13\,000$ to $10\,000$ years before present (BP) mainly reflect the effects of carbon system changes as a result of repartitioning of carbon between atmosphere, ocean, biosphere, sediments, etc., as well as possible changes in the system dynamics, like the mixing of ocean surface and deep water. The variations during the Holocene probably reflect mainly changes in the ¹⁴C production rate. In the following we draw some independent conclusions on the stability of the carbon system during the past ca. 20000 years to investigate the potential influence of carbon system variations on the atmospheric ¹⁴C:C ratio.

How stable is the atmospheric CO, concentration and the CARBON SYSTEM DYNAMICS IN GENERAL?

Information on the stability of the carbon system during the past 30 years can be drawn from the direct CO₂ concentration observations at Mauna Loa, Hawaii, and at the South Pole, which started in 1985. In spite of the very large yearly exchange fluxes between atmosphere and ocean and atmosphere and biomass, which together correspond to $25\,\%$ of the atmospheric CO₂ per year, the atmospheric CO₂ concentration reacted relatively monotonously to the anthropogenic input (figure 2). The annual increase of CO_2 was ca. 1 ± 1 p.p.m. CO_2 per year, varying not more than ca. 3% of the atmospheric CO₂ content. Figure 3 shows the CO₂ increase reconstructed from measurements of the air occluded in an ice core from Siple Station, Antarctica, over the past 200 years (Neftel et al. 1985; Siegenthaler & Oeschger 1987). Again a very homogeneous increase of atmospheric CO₂ is observed and deconvolution of the increase by using a carbon cycle model resulted in a total CO₂ production from fossil fuel combustion as well as from deforestation and land managing that might be very close to the actual ones (Siegenthaler & Oeschger 1987). Based on this work we conclude that the carbon cycle, in † p.p.m. is parts per million by volume.

SOLAR MODULATION OF COSMIC RADIATION

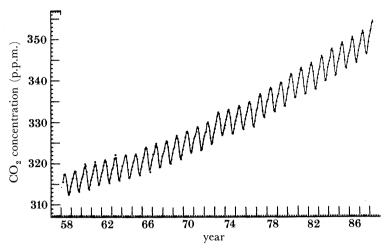


FIGURE 2. Concentrations of atmospheric CO₂ (p.p.m.) at Mauna Loa Observatory, Hawaii, from 1958 to 1988.

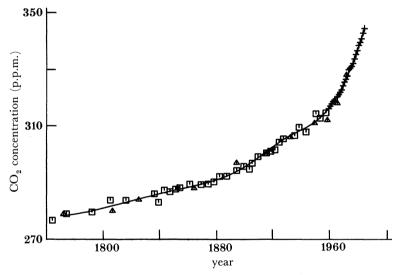


FIGURE 3. Atmospheric CO₂ increase in the past 200 years as indicated by measurements on air trapped in old ice from Siple Station, Antarctica, (Neftel et al. 1985) and by the annual mean values from Mauna Loa. The full line is a spline fit through all data (Siegenthaler & Oeschger 1987).

particular the CO₂ exchange atmosphere-ocean, during the past 200 years functioned essentially as it does at present.

Going further back in time there are indications of minor variations in atmospheric CO₂, e.g. an increase by ca. 5 p.p.m. between 1200 and 1300 A.D.

Estimates using carbon cycle models indicate that such small variations probably had little influence on the atmospheric ¹⁴C:C ratio. A somewhat different situation might have existed at the beginning of the Holocene when the CO₂ system was adjusting to the new conditions. CO₂ measurements on the Byrd Station core, Antarctica (figure 4) showed a decrease from ca. 280 p.p.m. to 255 p.p.m. during a period of ca. 4000 years. An obvious explanation for this change is the regrowth of soils and plants on the continents in areas that during the glacial had been covered by ice.

The decrease in atmospheric CO₂ was about 10 % and, based on the assumption of an ocean

behaving, regarding its chemistry, like the present one, the $10\,\%$ CO₂ decrease in the atmosphere and the CO₂ partial pressure in the surface ocean correspond according to a rough estimate to an extraction of CO₂ from the atmosphere–ocean system of ca. 400 Gt C.

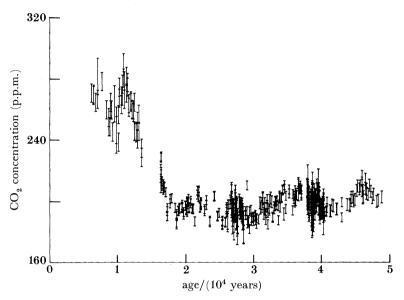
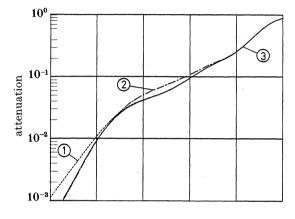


Figure 4. CO₂ concentrations of the past 5000–50000 years, measured on air trapped in an ice core drilled at Byrd Station, Antarctica (B. Stauffer & J. Schwander, personal communication).

It is not impossible that this phenomenon had some impact on the long-term ¹⁴C:C trend. In fact 7000 years BP the ¹⁴C record (figure 1) shows a decline of the ¹⁴C:C ratio by ca. 30%. For final conclusions the ¹⁴C record should be extended further back in time and model estimates should be made.

Figure 4 shows the CO_2 concentrations during the glacial–post-glacial transition $12\,000-10\,000$ years BP measured on the ice core from Byrd Station, Antarctica. Evident are the relatively low CO_2 concentrations during glacial period and the parallel increase with the rising $\delta^{18}O$ values that mark the climatic transition. The data are not dense enough to exclude a CO_2 increase in two steps as suggested from studies of ice cores from Greenland (Dansgaard & Oeschger 1989).

There is little doubt that the CO₂ concentration change from 180 to 280 p.p.m. during this period had an influence on the ratio ¹⁴C:C in atmospheric CO₂, because on the one side the increase probably was due to CO₂ with a lower ¹⁴C:C ratio escaping from the ocean. In addition, with the new partitioning of CO₂ also the CO₂ system dynamics changed. Indicators for the ¹⁴C:C variation during this period have been obtained from plant macrofossils in Swiss lakes (Zbinden *et al.* 1990).


The 10Be variations

Both ¹⁴C and ¹⁰Be are produced by the interaction of cosmic rays and their secondaries with atomic nuclei of air gases. Though the detailed production mechanisms for the two isotopes are different, it is a valid assumption to consider as a first approximation the relative ¹⁴C and ¹⁰Be production variations to be equal.

Their geochemical pathways are very different: whereas ¹⁴C is oxidized to ¹⁴CO₂, ¹⁰Be is attached to aerosol particles. ¹⁴CO₂ mixes rapidly with atmospheric CO₂, but is also in exchange with the carbon in the ocean and in the biomass and soils. ¹⁰Be is precipitated after a residence time of 1-2 years and can be found in polar ice and in sediments. Thus short-term production variations in principle are recorded in polar ice and can be studied in annual layers.

SOLAR MODULATION OF COSMIC RADIATION

In the case of ¹⁴C, production fluctuations are considerably damped and delayed. Attenuation factors and delay times are given for different models in figure 5 (Siegenthaler et al. 1980). Typical examples of attenuation factors for the periods 11 years, 200 years and 2000 years are ca. 100, ca. 20 and ca. 8, respectively.

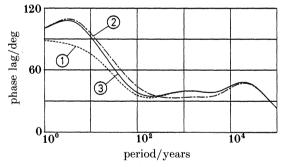


FIGURE 5. Attenuation and phase-shift of tropospheric ¹⁴C concentration for a sinusoidal variation of the ¹⁴C production rate. (1) Well-mixed atmosphere, model includes biosphere; (2) troposphere separated from stratosphere, no biosphere; (3) troposphere and stratosphere separated, model includes biosphere (Siegenthaler et al. 1980).

This large damping of ¹⁴C production variations, which renders their detection difficult, is partly compensated by the fact that ¹⁴C can be measured relative to a tracer, i.e. ¹⁴C:C in CO₂, which is globally well mixed within a few years in the atmosphere. Because of its short atmospheric residence time ¹⁰Be is not well mixed in the atmosphere and is therefore influenced by local parameters. Also a valid carrier is missing.

The ¹⁰Be concentrations are expressed in atoms per gram of water. Both the atmospheric transport of the aerosols and the dilution with water may vary from year to year.

Because the damping of 10Be-production due to the short residence time is essentially

negligible and the production variations are relatively large (20–30 % for the 11-year cycle) the terrestrial noise does not prevent the observation of the so-called 11-year cycle of the 10Be production due to solar modulation of the cosmic-ray flux.

Comparisons between ¹⁰Be and ¹⁴C

The first attempts to investigate if ¹⁰Be in ice cores shows variations comparable with those of ¹⁴C in tree rings were performed on an ice core from station Milcent in central Greenland (Beer et al. 1983; Oeschger et al. 1987). The ice core covers the past 800 years. Large variations in the ¹⁰Be concentrations have been found. For a comparison with the measured ¹⁴C variations, a carbon cycle model was used to calculate the ¹⁴C variations assuming that the ¹⁰Be record directly reflects the ¹⁴C production variations. The agreement is satisfactory. The three periods of high ¹⁴C:C (corresponding to the Maunder, Spörer and Wolf solar minima) also appear in the calculated ¹⁴C:C record. However, whereas the ¹⁰Be based ¹⁴C maximum agrees during the Wolf in amplitude with the measured one, during the Spörer Minimum it underestimates and during the Maunder Minimum it overestimates it.

¹⁰Be in the Camp Century ice core, North Greenland

Thanks to the collaboration with Dr C. C. Langway, SUNY, Buffalo, U.S.A., it was possible to measure the ¹⁰Be concentrations in the ice core from Camp Century, North Greenland, which covers the past ca. 100 000 years. The data on both 10 Be and δ^{18} O are given in figure 6.

The most striking feature is that after a flat part with minor fluctuations, both records show a rapid increase at 250 m above bedrock. This height above bedrock corresponds to the transition from Pleistocene to Holocene.

This parallel change in ¹⁰Be and δ¹⁸O can be explained by the assumption of a roughly constant 10 Be flux and a precipitation rate that was smaller during the cold period (δ^{18} O values more negative) than during the warm post-glacial period. During the glacial period, therefore, ¹⁰Be was considerably less diluted by water vapour than during the post-glacial one. In fact the variations of the ¹⁰Be concentrations have been used to estimate accumulation rate changes during the past 160 000 years in the Vostok core (Raisbeck et al. 1987).

There are also some interesting differences in the ¹⁰Be and δ¹⁸O profiles: below 100 m above bedrock ¹⁰Be concentrations are low, comparable with the Holocene level, with the exception of one value, whereas the δ^{18} O still indicates glacial conditions. At present we cannot explain this phenomenon.

The small variations in δ^{18} O and δ^{1 the range 1200-1250 m above bedrock, which corresponds to the Maunder Minimum period of sunspots (1645–1715 A.D.) known as a cold period in Europe. Most of the ¹⁰Be variations therefore have to be explained by another phenomenon than terrestrial modulation.

For a further analysis the ¹⁰Be variations were again converted in apparent ¹⁴C variations, based on the assumption that the production variations of ¹⁰Be and ¹⁴C had been proportional and that the carbon cycle model also holds for the entire post-glacial period. Because both the ¹⁰Be and the ¹⁴C records are strongly affected by terrestrial phenomena in the glacial and the glacial-post-glacial transition period this comparison was only performed for the period 7000 B.C. till present (figure 7). The choice of this boundary for the assumption of more or less

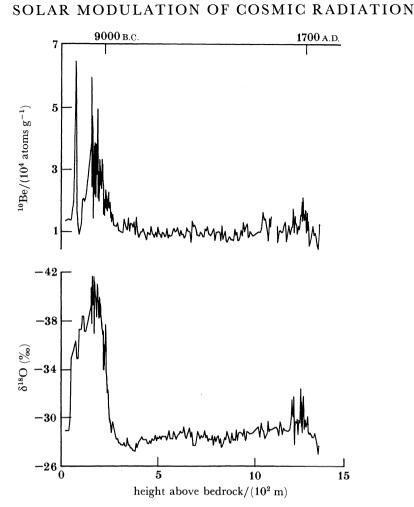


Figure 6. ¹⁰Be concentrations and δ¹⁸O from the Camp Century ice core, Greenland (Beer et al. 1988). The strong changes at 250 m correspond to the transition into the last glaciation (ca. 9000 B.C.).

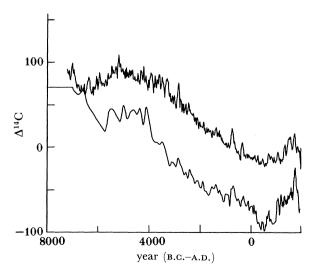


Figure 7. Comparison of measured $\Delta^{14}C$ (figure 1) with calculated $\Delta^{14}C$ based on the ^{10}Be concentrations of figure 6a. The calculated curve is shifted by 50 per mille for easier comparison.

stable conditions both for the 10 Be and the CO_2 system is somewhat arbitrary and it cannot be excluded that the long-term trends are influenced by after effects following the transition to the Holocene.

Such effects, however, probably would have little influence on the short-term variations that we discuss next. To compare the short-term ¹⁰Be and ¹⁴C variations from both the model-generated ¹⁴C data and the tree ring data of the period 3000 B.C. to 1800 A.D., the long-term trend was removed by applying a binomial high-pass filter. The resulting curves are shown in figure 8 (Beer *et al.* 1988). They are very similar; for example, the prominent maxima of the tree-ring record at *ca.* 2800 B.C., 900 B.C., 300 B.C., 800 A.D., 1100 A.D. and 1700 A.D. (Maunder Minimum) are also found in the ¹⁰Be-based model curve. Also the cross-correlation function was calculated. The correlation coefficient has a clear maximum for a phase shift near zero years; its value of 0.58 is highly significant. Although the amplitudes of the ¹⁰Be-based ¹⁴C variations are slightly higher (4.4% compared with 3.9%) the general agreement is satisfactory.

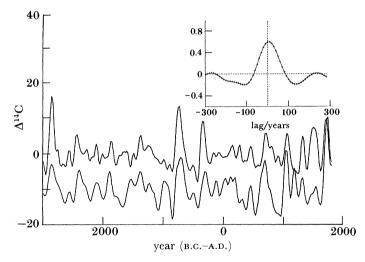


FIGURE 8. (a) Expansion of the period 3000 B.C. to A.D. 2000 of figure 7 after removing the long-term trend (Beer et al. 1988). The upper curve represents the measured, the lower one the calculated Δ^{14} C values. The lower curve is shifted by 10 per mille. (b) Cross-correlation between the two curves as a function of lag time.

From this comparison we conclude with two points.

- 1. Both the ¹⁰Be and the ¹⁴C variations have a common cause, i.e. variations in the production rates.
- 2. The good agreement between the direct ¹⁴C- and the ¹⁰Be-deduced short-term variations indicates that for the period investigated the carbon cycle model (Siegenthaler & Oeschger 1987) describes very well the response of the carbon system to an atmospheric disturbance with a characteristic time of *ca.* 200 years.

The long-term effects in $^{10}\mbox{Be}$ and $^{14}\mbox{C}$

The long-term effects in the cosmogenic isotope records are of lesser relevance to the topic of this Symposium and we summarize the major results and conclusions briefly. Beer et al. (1988) studied how far the ¹⁰Be long-term record of the past 9000 years can be explained by

the hitherto determined long-term variation of the geomagnetic dipole moment. They came to the conclusion that the observed ¹⁰Be date and those derived from the geomagnetic modulation

are not in good agreement. Possible explanations for the poor agreement might be (1) the fact that a high-latitude record reflects to some degree regional production of ¹⁰Be and might not therefore be ideal for the study of the geomagnetic effects that are relatively small in the polar atmosphere; (2) the reconstruction of the geomagnetic dipole moment from palaeomagnetic intensity data is hampered by serious uncertainties.

SOLAR MODULATION OF COSMIC RADIATION

When comparing the measured ¹⁴C record with the ¹⁰Be-derived record one can draw the following conclusions regarding the long-term behaviour (figure 7).

The ¹⁴C decrease from 5000 B.C. to 500 A.D. is not reflected in the ¹⁰Be concentration record. It can, however, be simulated by assuming that the production rate of cosmogenic radionuclides during the last ca. 10000 years of the Pleistocene was higher by 20% than during the Holocene leading to higher ¹⁴C levels in all the carbon reservoirs. The decrease during the Holocene can be understood as an exponential adjustment to the new steady state corresponding to the lower production rate. Such an adjustment would also occur for a constant ¹⁴C production if after the last glaciation the CO₂ system had not been in equilibrium regarding ¹⁴C production and decay. Astonishingly high are the ¹⁰Be concentrations during the past 1000 years, partly as a result of the three periods of a quiet Sun, partly as a result of a decrease of the geomagnetic field intensity. The increase of the ¹⁴C:C ratio during this period is also reflected in the direct ¹⁴C measurements.

To obtain a perfect picture of the ¹⁰Be production one should in principal measure its precipitation history over the entire globe. Samples suited for this purpose are hard to get from mid-latitude glaciers, but correspondingly high resolved information from Antarctica is available (G. M. Raisbeck, this Symposium). The Wolf, Spörer and Maunder Minima are also visible in these records. The Maunder Minimum is less pronounced than in the Greenland cores.

This raises the question whether transport and deposition, or polarity effects caused the different distribution of cosmic-ray produced ¹⁰Be in the two polar area during the periods of the quiet Sun.

Conclusions

The ¹⁰Be record in ice cores and the ¹⁴C record in tree rings give insights into Earth and planetary system processes that hitherto seemed beyond the potential of the natural sciences. In the following some of the major results are summarized.

- 1. During quiet periods of the Earth system the records essentially give information on the production rate of ¹⁰Be and ¹⁴C, whereas in periods of major climatic change, like the glacial-post-glacial transition, ca. 15000-10000 years BP, the fluctuations in the records are dominated by Earth system changes.
- 2. A major result is the widely consistent information on the periods of the quiet Sun with high cosmogenic isotope production; during the past 5000 years seven periods of high ¹⁰Be and ¹⁴C concentrations have been identified. They provide a basis to study the possible effects of variations of solar properties on climate.
- 3. The good agreement between the short-term ¹⁴C variations measured on tree rings and those models calculated from the short-term ¹⁰Be variations supports the validity of the carbon cycle model used, at least regarding variations with characteristic times of ca. 200 years.

However, with potential effects of global change this model may lose part of its predictability.

- 4. More difficult is the explanation of the long-term ¹⁴C change. There are two possible reasons.
 - (i) The decrease of ¹⁴C after last glaciation until 500 A.D. may reflect a carbon system not in equilibrium regarding production and decay after the drastic effects during the glacial-post-glacial transition. At maximum such a disequilibrium was of the order of $\Delta^{14}C = 100\%$, which seems at the low side of expectations.
 - (ii) There is geomagnetic modulation of production as partly suggested from the ¹⁰Be record.
- 5. Astonishing is the increase in ¹⁴C and ¹⁰Be after 500 A.D. Possible reasons are a decrease in the Earth's magnetic field; an unusual summation of periods of a quiet Sun; meteorological effects in the ¹⁰Be deposition process; some unknown carbon cycle effects regarding the ¹⁴C increase.

To answer some of the questions raised here, there is an urgent need for additional ¹⁰Be measurements on ice cores in both hemispheres, but also attempts to resolve the 11-year cycle in the ¹⁴C record, especially during, for example, the solar Maunder Minimum.

REFERENCES

- Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M. & Wölfli, W. 1988 Nature, Lond. 331, 675 - 679
- Beer, J., Siegenthaler, U., Oeschger, H., Andrée, M., Bonani, G., Hofmann, H. J., Nessi, M., Suter, M., Wölfli, W., Finkel, R. C. & Langway, C. C. 1983 In Proc. 18th Int. Cosmic Ray Conf., Bangalore (ed. N. Durgaprasad, S. Ramadurai, P. V. Ramana Murthy, M. V. S. Rao & K. Sivaprasad), vol. 9, pp. 317-320.
- Daansgard, W. & Oeschger, H. 1989 In The environmental record in glaciers and ice sheets (ed. H. Oeschger & C. C. Langway Jr), pp. 285-317. New York: Wiley.
- Neftel, A., Moor, E., Oeschger, H. & Stauffer, B. 1985 Nature, Lond. 315, 45-47.
- Oeschger, H., Welten, M., Eicher, U., Moell, M., Riesen, T., Siegenthaler, U. & Wegmueller, S. 1980 Radiocarbon **22**, 299–310.
- Oeschger, H., Beer, J. & Andrée, M. 1987 Phil. Trans. R. Soc. Lond. A 323, 45-56.
- Raisbeck, G. M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J. & Barkov, N. I. 1987 Nature, Lond. 326, 273-277. Siegenthaler, U., Heimann, M. & Oeschger, H. 1980 Radiocarbon 22, 177-191.
- Siegenthaler, U. & Oeschger, H. 1987 Tellus B 39, 140-154.
- Stuiver, M. & Kra, R. S. 1986 Radiocarbon 28, 969-979.
- Suess, H. E. 1971 In Radiocarbon variations and absolute chronology, Proc. 12th Nobel Symp. (ed. I. U. Olsson), pp. 303-313. New York: Wiley.
- Zbinden, H., Andrée, M., Oeschger, H., Ammann, B., Lotter, A., Bonani, G. & Wölfli, W. 1990 Radiocarbon (In the press.)